
 
 

MagneFlex 
DynaPro POS Application 

User and Integration Manual 

 

August 9, 2016 
 

Manual Part Number:  
D998200099-30  

 
REGISTERED TO ISO 9001:2008 

  



D998200099-30.docx - MagneFlex  

2 
 

Copyright © 2016 MagTek, Inc. All rights reserved. 
Printed in the United States of America 

 
Information in this publication is subject to change without notice and may contain technical 
inaccuracies or graphical discrepancies.  Changes or improvements made to this product will be 
updated in the next publication release.  No part of this document may be reproduced or transmitted 
in any form or by any means, electronic or mechanical, for any purpose, without the express written 
permission of MagTek, Inc. 
 
Microsoft® and Windows® are registered trademarks of Microsoft Corporation. 
 
All other system names and product names are the property of their respective owners. 

0. Table 0.1 - Revisions 
Rev 

Number 
Date Name Notes 

10 April 15, 
2016 

Roger Applewhite 
 

Initial Release 

20 April 20, 
2016 

Phisa Kelleher Updated Section 10 

30 August 9, 
2016 

Phisa Kelleher Added  Section E - First Data EMV 
Receipt Requirements 

 
 

CONFIDENTIAL 
This document may not be reproduced or distributed. This document is for informational purposes 
only. Changes to this document may occur without notice. 
  



D998200099-30.docx - MagneFlex  

3 
 

Table of Contents 
0. Table 0.1 - Revisions .............................................................................................................. 2 

Table of Contents ........................................................................................................................... 3 

1 Introduction ............................................................................................................................. 5 

2 System Architecture ............................................................................................................... 6 

3 Operating Modes .................................................................................................................... 8 

3.1 MPPG ................................................................................................................................ 8 

3.2 Decrypt and Forward ....................................................................................................... 8 

3.3 Demo ................................................................................................................................ 9 

4 Transaction Types ................................................................................................................. 10 

5 Operations ............................................................................................................................. 11 

5.1 Description ..................................................................................................................... 11 

5.1.1 ProcessCardSwipe ................................................................................................. 11 

5.1.2 ProcessEMVSRED .................................................................................................. 11 

5.1.3 ProcessReferenceID .............................................................................................. 11 

5.2 Input Fields .................................................................................................................... 11 

5.3 Output Fields ................................................................................................................. 12 

5.4 Exception ....................................................................................................................... 13 

6 Translation Scheme .............................................................................................................. 14 

6.1 Decrypt and Forward XML Input Templates ................................................................ 17 

6.2 Decrypt and Forward Output Keys ............................................................................... 19 

7 Configuration File .................................................................................................................. 20 

7.1 MagneFlex Configuration .............................................................................................. 20 

7.2 Terminal Management .................................................................................................. 20 

7.3 MPPG Mode Configuration ........................................................................................... 21 

7.3.1 Credentials ............................................................................................................. 21 

7.4 Decrypt and Forward Mode Configuration ................................................................... 21 

7.4.1 General Configuration Data ................................................................................... 21 

7.4.2 Credentials ............................................................................................................. 22 

7.4.3 Plug Data ................................................................................................................ 22 

8 Example Transactions .......................................................................................................... 23 

8.1 MPPG Mode ................................................................................................................... 23 

8.1.1 Step 1: POS Application calls MagneFlex ............................................................. 23 

8.1.2 Step 2: MagneFlex interacts with the Configuration File .................................... 23 



D998200099-30.docx - MagneFlex  

4 
 

8.1.3 Step 3: MagneFlex interacts with DynaPro .......................................................... 24 

8.1.4 Step 4: MagneFlex calls Magensa’s MPPG service ............................................. 24 

8.1.5 Step 5: MagneFlex completes the EMV transaction with the Terminal ............. 24 

8.1.6 Step 6: MagneFlex returns response data to the POS Application .................... 24 

8.2 Decrypt and Forward Mode .......................................................................................... 25 

8.2.1 Step 0: Configure Decrypt and Forward Templates ............................................. 25 

8.2.2 Step 1: POS Application calls MagneFlex ............................................................. 25 

8.2.3 Step 2: MagneFlex interacts with the Configuration File .................................... 26 

8.2.4 Step 3: MagneFlex interacts with DynaPro .......................................................... 27 

8.2.5 Step 4: MagneFlex builds the XML payload for the Decrypt and Forward service
 27 

8.2.6 Step 5: MagneFlex sends the constructed XML message to the Decrypt and 
Forward service ..................................................................................................................... 28 

8.2.7 Step 6: MagneFlex receives the response from Decrypt and Forward and 
parses key data .................................................................................................................... 28 

8.2.8 Step7: MagneFlex completes the transaction with the terminal (EMV only) and 
responds back to the POS Application ................................................................................ 29 

9 Appendix A – EMV Terminal Configuration ......................................................................... 31 

10 Appendix B – Decrypt and Forward Magstripe Field Replacement Variables .............. 32 

11 Appendix C – Use of MagneFlex with Browsers and Mixed Content ............................. 33 

12 Appendix D – MagneFlex Error Messages ....................................................................... 34 

13 Appendix E – First Data EMV Receipt Requirements ..................................................... 35 

 



D998200099-30.docx - MagneFlex  

5 
 

1 Introduction 
MagneFlex for DynaPro is an application that, when used in conjunction with the MagTek family of 
DynaPro payment terminals and Magensa transaction processing services, provides a simplified and 
consistent interface for a POS Application to initiate and complete card-based payment transactions. 
 
To maximize flexibility, MagneFlex is template-driven, using data translation techniques to 
seamlessly interoperate between the MagneFlex input API, the Terminal interface, payment card 
technologies (MSR, EMV, key-entered), and downstream Processor APIs. 
 
This document is intended as both a guide to the MagneFlex architecture, a structured method for 
integrating a POS Application to MagTek and Magensa products, as well as a listing of available 
operations to effect Magnetic Stripe, EMV, and Reference transactions. It is therefore useful for 
payment system architects as well as software developers. In both cases, the organization 
integrating MagneFlex into a solution is called the “integrator”. 
  



D998200099-30.docx - MagneFlex  

6 
 

 

2 System Architecture 
MagneFlex employs an architecture that contemplates the following elements of a payment system: 

• Terminal – A MagTek DynaPro terminal. The Terminal includes magnetic stripe card reader, 
Integrated Circuit Card (ICC) reader, Near Field Communication (NFC) reader, PIN Entry 
Device (PED), EMV processing support, Secure Reading and Exchange of Data (SRED) 
support, and touchscreen user interface. Output data is encrypted under DUKPT/TDES.  

• Terminal Host – a computer running Microsoft Windows 7 or later that sends commands to 
the Terminal via USB or a local IP network to drive it through operational steps required to 
effect a card read or other function. The Terminal Host runs the MagneFlex application as a 
local Windows service. 

• POS Application – The application, provided by the integrator of MagneFlex, that will process 
a payment transaction through its steps from totaling items for purchase and calculating a 
payment transaction amount, to payment receipt generation and other post transaction 
tasks. The POS Application can be resident on the Terminal Host, or on a separate device 
that can access the Terminal Host via an IP network. 

• Processing Chain – The downstream collection of decryption, gateway, merchant processing 
and card/payment authorization functions provided nominally by Magensa LLC and 
additional entities such as the merchant processor, card brand, card issuing bank, or even 
non-payment providers. For the purposes of this document, the endpoint called by Magensa 
is termed the ‘Processor’. MagneFlex has two operating modes that utilize either the 
Magensa Payment Protection Gateway (MPPG) service, a traditional payments gateway, or 
Magensa’s Decrypt and Forward service. Processors that are endpoints for MagneFlex must 
provide “host capture” services. Terminal capture is not supported. 

• MagneFlex – An application package, operating as a local Windows web service on the 
Terminal Host that mediates transaction processing between the POS Application, Terminal, 
and the Processing Chain. Most task steps in the process are hidden or abstracted by 
MagneFlex so that the POS Application needs minimal awareness of both function and state 
during transaction processing. MagneFlex accepts JSON commands posted by the POS 
Application (REST), and operates as a multi-instance, multi-threaded service that can support 
transaction requests from multiple POS Applications simultaneously and drive multiple 
Terminals simultaneously. MagneFlex requires that the Terminal be configured for EMV 
online only. Please see appendix A. 

 



D998200099-30.docx - MagneFlex  

7 
 

 
 
This architecture not only supports modularity and flexibility for Payment system integrators, but also 
defines the elements that are generally certified by Processors as the System Under Test (SUT) for 
EMV certification. The architecture bears similarity to a canonical form often referred to in the 
payments industry as “software semi-integrated”. However, as there is no standardized definition of 
this form, MagTek makes no representations as to the fitness of MagneFlex in any organization’s 
definition of the term. However, MagneFlex is designed to be adaptable and extensible to a wide 
variety of payment system concepts and architectures, and can be used to solve a variety of 
architecture and integration issues. 
  



D998200099-30.docx - MagneFlex  

8 
 

3 Operating Modes 
MagneFlex can function either as a front-end to Magensa’s traditional payment gateway, the 
Magensa Payment Protection Gateway (MPPG) or it can pass transactions to Magensa’s Decrypt and 
Forward system. 

3.1 MPPG 
In this mode, MagneFlex assumes the merchant has been boarded on MPPG by the integrator or 
their assignee, and will be using a Processor that was defined during that boarding process. MPPG 
maintains the interface to the Processor, as well as storing an account profile of the merchant, 
including all credentials and other information required by the Processor to accept a payment 
transaction request from the merchant. MagneFlex, in conjunction with MPPG, also maintains all 
required interface information required by the Processor in order to properly form a transaction 
request message per their specification. The POS Application is not required to be aware of any of 
this information or the interface to the Processor. 
 
In addition, as the data from the Terminal is encrypted, MPPG performs a decryption function in 
Magensa’s secure servers. This keeps any sensitive cardholder data produced by the Terminal 
encrypted until it arrives at Magensa. Therefore, no local system or network in front of Magensa, 
such as the merchant’s systems or the Terminal Host, has access to unencrypted cardholder data. 
In addition, for certain Processors, Magensa will certify the Terminal, MagneFlex and the Processing 
Chain independent of the POS Application as the EMV SUT so that the integrator will be involved as 
little as possible in the certification process (or not at all). Magensa will provide a list of completed 
certifications from time-to-time. 
 
To use this mode, integrators must be registered on MPPG as “resellers” and must board merchants 
onto MPPG. The details of obtaining a reseller account as well as details of the boarding operation 
are provided in other documents. Please contact Magensa for details. 

3.2 Decrypt and Forward 
In this mode, MagneFlex assumes that all data, including transaction formatting information (XML) 
and merchant credentials required by a downstream Processor or other entity, has been placed in 
MagneFlex XML Templates on the Terminal Host. MagneFlex uses this information to form a 
transaction message bound for the Processor. It sends the message to Magensa’s Decrypt and 
Forward service, where cardholder data is decrypted and placed into the formed transaction 
message received from MagneFlex. It then calls the Processor using credentials provided by 
MagneFlex. The response is then returned to MagneFlex and then returned to the POS Application 
 
Unlike MPPG, it is unnecessary for the integrator to board the merchant at Magensa. It simply stores 
the merchant credentials and other data in MagneFlex’s Configuration File. The integrator only 
requires an account on the Decrypt and Forward service to use MagneFlex with any merchant. 
 
As with MPPG, no unencrypted cardholder data is found on any component of the system in front of 
Magensa. 
 
With this model, it is necessary for the integrator to obtain the relationship with and manage the 
certification to the Processor. In addition, the integrator must create the MagneFlex XML Templates 
that contain the XML formatting of the message bound for the Processor. Therefore, the integrator is 
responsible for obtaining and utilizing the Processor’s API. In essence, MagneFlex acts as a 
component of the merchant’s or integrator’s technology infrastructure that the integrator wishes to 
connect to one or more Processors. 



D998200099-30.docx - MagneFlex  

9 
 

This mode requires more effort and payment system knowledge on the part of the integrator, but can 
be adapted to a wide variety of Processors and processing functions, even ones that are not 
traditional Processors. This can provide a wider scope of functionality and endpoints than can be 
provided by MPPG. As MagneFlex and Magensa are treated as part of the integrator’s infrastructure, 
the integrator controls the relationship with the Processor and thus manages functionality, 
certification schedules, and other operations directly with the Processor, not needing to rely on 
Magensa. 

3.3 Demo 
MagneFlex can simulate the Processing Chain locally so that integrators can learn the application 
without yet having obtained a relationship with a Processor. All transaction requests are returned as 
authorized or successfully completed, regardless of input.  
  



D998200099-30.docx - MagneFlex  

10 
 

4 Transaction Types 
In the payment card industry, there are several recognized transaction types accepted by most 
Processors. MagneFlex and Magensa attempt to process one of these types through the processing 
chain when one of the operations MagneFlex provides is called by the POS Application. Generally 
speaking, MagneFlex assumes the Processor is operating in “Host Capture Mode”, that is, 
settlement batches are collected, stored and processed by the Processor. MagneFlex and MagTek 
readers do not store settlement data for batch processing, what is sometimes referred to as 
“Terminal Capture Mode”. 
The following transaction types are available in MagneFlex: 

• 1 – SALE: A request to a Processor to authorize and settle a purchase amount. 
• 2 – AUTHORIZE: A request to a Processor to authorize funds only. To settle the funds later, a 

3 – CAPTURE transaction must be processed. 
• 3 – CAPTURE: Requests the Processor settle an open authorization for the amount provided. 
• 4 – VOID: Requests the Processor cancel an outstanding authorization before it has been 

settled. 
• 5 – REFUND: Requests the Processor refund a previously settled transaction. 
• 6 – FORCE: Requests the Processor settle a transaction whose original authorization was not 

processed from a card. Normally for voice telephone authorized transactions. 

Each transaction type above will have its own input data requirements. For MPPG, these 
requirements are controlled by the MPPG API. For Decrypt and Forward, they are controlled by the 
Processor, and must be reflected in the Decrypt and Forward templates discussed in a later section 
of this document.  
 
MagneFlex processes a transaction when the POS Application initiates one of three available web 
service operations. Each operation gathers certain data from the Terminal and presented card and 
then launches the transaction type indicated. In general, any transaction type may be used with any 
MagneFlex operation. However, if the operation does not collect the required data for the 
transaction, the operation will fail. Below is a list of the operations and the data they generally 
collect: 
 

• ProcessCardSwipe – Data from the magnetic stripe of a card.  
• ProcessEMVSRED – Data from an EMV ICC. Due to the EMV process, this operation is 

constrained to “1 – SALE” and “2 – AUTHORIZATION” only. 
• ProcessReferenceID – A reference ID presented to the operation by the POS Application. This 

operation is suited to transaction types that refer to earlier transactions. Therefore, “1 – 
SALE” and “2 – AUTHORIZATION”, as they are initial transactions in the POS processing 
chain, are not appropriate for this operation. 

  



D998200099-30.docx - MagneFlex  

11 
 

5 Operations 
MagneFlex operates as a JSON web service, using HTTP POST, listening to the Terminal Host’s 
localhost address. The structure of the inputs and outputs are similar, so they will be listed once, 
with variations by operation noted in line. 

5.1 Description 

5.1.1 ProcessCardSwipe 
Requests a magnetic stripe read (MSR) from the Terminal and forms a transaction message based 
on the Operating Mode configured and the transaction type requested. If the card swiped is an EMV 
ICC, it will still be processed as a magnetic stripe transaction. Therefore, if the system is certified and 
operating to accept EMV, this operation should not be used. ProcessEMVSRED should be used when 
both MSR and ICC are expected. 
HTTP POST to localhost:9000/api/magneflexhost/ProcessCardSwipe 

5.1.2 ProcessEMVSRED 
Requests an MSR or ICC read, depending on what the cardholder presents. If the card is not EMV-
capable, a traditional, non-EMV transaction will be processed. If the card is EMV-capable, an EMV 
transaction will be processed regardless of card read method (MSR, ICC, contactless). 
HTTP POST to localhost:9000/api/magneflexhost/ProcessEMVSRED 

5.1.3 ProcessReferenceID 
Processes a transaction to the Processing Chain without data read from a card, but with a reference 
to an originating transaction. For example, this operation may be used to process a “3 – CAPTURE”, 
a request to settle a previous authorization, by referring to the TransactionID of that authorization, 
not the card number used. The Terminal is not involved in this operation. 
HTTP POST to localhost:9000/api/magneflexhost/processreferenceid 

5.2 Input Fields 
• AdditionalRequestData (O)1 – A Key/Value pair structure for presenting additional data 

required by MagneFlex for future features2. 
• DeviceID(O)[ProcessCardSwipe and ProcessEMVSRED only] – The address the host uses to 

find the Terminal, prepended with the access method. In the case of USB, it is the Terminal 
Device ID. Example: USB://98D70CE31309160D. If Ethernet, the IP address of the 
Terminal. Example: IP://196.168.0.1. If this field is not used, the host will attempt to 
connect to the first Terminal it finds on USB. This field can also be passed to the Processor, 
in Decrypt and Forward mode, if desired. 

• CardSwipeInput(O)[ProcessCardSwipe only] 
o CVV – Some Processors allow CVV2 to be submitted with an MSR transaction for 

extra security. Please contact your Processor. 

                                                      
 
 
 
1 Optional fields, marked by ‘(O)’, will be sent downstream by MagneFlex as presented. If the field is missing, its 
tag will not be sent. If it is included, the tag and value will be sent, regardless of the value, even if empty. For 
Decrypt and Forward, some Processors require the tag not be presented if its value is empty or null. Please refer to 
their requirements. 
2 This field may be used to override the Magensa login credentials stored in the configuration file. Please see 
“Credentials” in the Configuration File section. 



D998200099-30.docx - MagneFlex  

12 
 

o ZIP - Some Processors allow cardholder zip code to be submitted with an MSR 
transaction for extra security. Please contact your Processor. 

• Options(R)[ProcessEMVSRED only] – A transaction time configuration of the Terminal. See 
MagTek for further details. The nominal value is “0”. 

• TransactionInput 
o Amount(R) – Amount requested for the transaction. For Decrypt and Forward mode, 

this should correspond to the transaction Amount as defined by the Processor. 
o TransactionInputDetails(O) – A Key/Value pair structure for presenting additional 

data required by either MPPG or the XML Template for a particular Decrypt and 
Forward Processor. For MPPG, please see the MPPG API. For Decrypt and Forward, 
see the “Configuration File” and “XML Templates” sections for further details. 

o TransactionType(R) – The type of transaction, represented by number, to be sent to 
the Processor.  

o CashBack(R)[ProcessEMVSRED only] - If the POS Application needs to request a 
cashback amount, the value, <x.xx>, is placed here. If no cashback is needed, enter 
“0.00”. 

o ReferenceAuthCode(O)[ProcessReferenceID only] – The Authorization Code from the 
original transaction, if your Processor requires it. 

o ReferenceTransactionID(R)[ProcessReferenceID only] – The TransactionID for the 
original transaction being referenced. 

5.3 Output Fields 
• CardSwipeOutput[ProcessCardSwipe only] 

o CardID – A tokenized representation of the swiped card. Can be used to identify the 
card in future transactions.  

o IsReplay – Indicates if the DUKPT key used to encrypt this transaction has already 
been presented to Magensa.  

o MagnePrintScore – The MagnePrint Score. MagnePrint is a unique magnetic stripe 
card authentication tool provided by MagTek and Magensa. Please refer to 
documentation available at www.magtek.com. 

o CRMToken – Reserved for future use. 
o AdditionalOutputData – Additional data that may be returned by the Processor in 

Decrypt and Forward mode. 
• EMVSREDOutput[ProcessEMVSRED only] 

o CardID – A tokenized representation of the ICC card. Can be used to identify the card 
in future transactions.  

o IsReplay – Indicates if the DUKPT key used to create the SRED cryptogram for this 
transaction has already been presented to Magensa. 

o AdditionalOutputData – Additional data that may be returned by the Processor in 
Decrypt and Forward mode. 

• CustomerTransactionID – A GUID identifying this MagneFlex transaction request. Created by 
MagneFlex. 

• MagTranID – A GUID identifying this MagneFlex transaction request. Created by Magensa. 
• TransactionOutput 

o CVVResult – The result of the CVV2 check if it was submitted in the input. 

http://www.magtek.com/


D998200099-30.docx - MagneFlex  

13 
 

o AVSResult - The result of the zip code check if it was submitted in the input. 
o AuthorizedAmount – The amount the card issuing institution authorized. In a partial 

authorization scenario, this may be less than the amount requested in the input. 
o AuthCode – The authorization code for this transaction created by the card issuing 

bank. 
o IsTransactionApproved – a boolean value indicating if the card issuing institution 

approved the transaction. 
o IssuerAuthenticationData[ProcessEMVSRED only] – A string that contains the EMV 

AC2 response from the issuing institution. Provided for reference purposes. 
o IssuerScriptTemplate1[ProcessEMVSRED only] – A string that contains the EMV 

issuer script 1 to be processed to the card. Provided for reference purposes. 
o IssuerScriptTemplate2[ProcessEMVSRED only] – A string that contains the EMV 

issuer script 2 to be processed to the card. Provided for reference purposes. 
o TransactionID – A string returned by the Processor identifying this transaction to 

them. 
o TransactionMessage – A string returned by the Processor describing the state of this 

transaction at the Processor. 
o TransactionOutputDetails – Additional output details in key/value format.  

 ProcessorResponse – The verbatim response from the Processor when using 
Decrypt and Forward mode. 

 BatchData[ProcessEMVSRED only]  
o TransactionStatus – A string code indicating the status of the transaction. Returned 

by the Processor. 
• TransactionUTCTimestamp 
• AdditionalOuputData - Additional data that may be returned by the Processor in Decrypt and 

Forward mode. 

5.4 Exception 
This is a generic exception class returned by MagneFlex if it encounters an internal error or an error 
is reported by the Terminal. See Appendix D for error messages. 

• faultcode(R): A numeric code indicating the fault type. 
• faultstring(R): A message describing the fault. 

  



D998200099-30.docx - MagneFlex  

14 
 

6 Translation Scheme 
The primary function of MagneFlex is to interoperate between the POS Application, the Terminal, the 
card technology presented (MSR, EMV, key-entered), and the Processor’s API. To do this, MagneFlex 
translates between the POS Application, the Terminal, and the Processor employing keyed 
references and templates: 
 

 

 

 

 

 

 
 

POS 
Application 

MagneFlex Operation 
Called by the POS Application. Each operation 
corresponds to a different data collection mode 
for the Terminal: 

• ProcessCardSwipe = MSR 
• ProcessEMVSRED = MSR or ICC 
• ProcessReferenceID = no Terminal data 

encrypted 

<StripeData> 

<ICCData> 



D998200099-30.docx - MagneFlex  

15 
 

 

 

 

 
 
 
 

Decrypt and 
Forward XML 
Input Template 

Files stored in the MagneFlex 
home directory that map 
Terminal and other data to the 
Processor’s input API XML by 
the transaction type selected. 

<AID>{9F06}</AID> 
<AIP>{82}</AIP> 
<ARQC>{9F26}</ARQC> 
<ATC>{9F36}</ATC> 

Processing Chain 

Processor 



D998200099-30.docx - MagneFlex  

16 
 

 

 

 

 

 
  

Decrypt and 
Forward 
Output Keys 

Key/value pairs that map the 
Processor’s output API XML to 
MagneFlex internal variables. 

<add 
key="DECRYPTANDFORWARD_
PROCESSOR_FIELDMAP_AUTH
CODE" 
value="/PurplePayRespon
se/Approval" /> 

MagneFlex Operation 

POS 
Application 



D998200099-30.docx - MagneFlex  

17 
 

6.1 Decrypt and Forward XML Input Templates 
As shown above, Decrypt and Forward Mode requires maps from the Terminal’s output (or the POS 
Application’s input), for a certain transaction type, to the Processor’s API XML structure. These maps 
are structured in MagneFlex as text files. Each of the defined combinations of operation and 
transaction type has its own template. MagneFlex finds these files on the Terminal Host’s file system 
by examining keys in the Configuration File. The key name takes the structure 
“DECRYPTANDFORWARD_TEMPLATE_<operation>_<transactiontype>”. The value associated with 
the key is the path (from the MagneFlex installation directory on the Terminal Host) and filename of 
the template. 
 
Fallback for ProcessEMVSRED 
As noted earlier in the document, ProcessEMVSRED may also be used with a non-ICC magnetic stripe 
card by swiping through the magnetic stripe reader, if the ProcessEMVSRED_CardType key in the 
configuration file is set to 3 or higher. When this is done, the reader detects the swiped card and 
processes in fallback mode. When in this mode, the reader accepts the swipe, but uses SRED3 
formatting to output the data. MagneFlex detects this and processes the transaction using the 
fallback process. The fallback process uses templates that are similar in construction to 
ProcessCardSwipe templates, but with additional information required to handle the SRED 
formatting. Please see Magensa support personnel for further information regarding the 
development of these templates. 
 
The fallback process also handles the situation where a presented EMV card’s chip fails. The reader, 
in this case, will then request the card be swiped. The resulting data will then be processed using 
fallback. 
The templates available for MagneFlex include the following4: 

• ProcessCardSwipe 
o Corresponding keys in the configuration file: 

 1 – SALE: DECRYPTANDFORWARD_TEMPLATE_CARDSWIPE_SALE 
 2 – AUTHORIZE: 

DECRYPTANDFORWARD_TEMPLATE_CARDSWIPE_AUTHORIZE 
 3 – CAPTURE: DECRYPTANDFORWARD_TEMPLATE_CAPTURE 
 4 – VOID: DECRYPTANDFORWARD_TEMPLATE_VOID 
 5 – REFUND: DECRYPTANDFORWARD_TEMPLATE_REFUND  
 6 – FORCE: DECRYPTANDFORWARD_TEMPLATE_FORCE 

• ProcessEMVSRED 
o Corresponding keys in the configuration file: 

 1 – SALE: DECRYPTANDFORWARD_TEMPLATE_EMV_SALE 
 2 – AUTHORIZE: DECRYPTANDFORWARD_TEMPLATE_EMV_AUTHORIZE 
 DECRYPTANDFORWARD_TEMPLATE_EMV_REJECT5 
 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_SALE 
 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_AUTHORIZE 

                                                      
 
 
 
3 Secure Reading and Exchange of Data. 
4 Not all transaction types can be used with all operations. 
5 This template may be needed by some Processors that require that MagneFlex automatically send an EMV reject 
transaction if the card or terminal declines any time after the First Card Action Analysis is completed. 



D998200099-30.docx - MagneFlex  

18 
 

 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_CAPTURE 
 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_VOID 
 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_REFUND 
 DECRYPTANDFORWARD_TEMPLATE_EMV_FALLBACK_FORCE 

• ProcessReferenceID 
o Corresponding keys in the configuration file: 

 3 – CAPTURE: DECRYPTANDFORWARD_TEMPLATE_CAPTURE 
 4 – VOID: DECRYPTANDFORWARD_TEMPLATE_VOID 
 5 – REFUND: DECRYPTANDFORWARD_TEMPLATE_REFUND  
 6 – FORCE: DECRYPTANDFORWARD_TEMPLATE_FORCE 

The data in a template can be static or dynamic. Static data is not intended to be changed across 
transactions. Decrypt and Forward will send it to the Processor verbatim. Dynamic data, however, is 
placed into the XML bound for the Processor at each transaction. Decrypt and Forward is directed to 
do this through “field replacement variables” in the template. These are formatted as {<variable 
name>}. Field replacement variables are labels for data available to Decrypt and Forward for 
insertion. 
 
Overall, there are four field replacement variable data types that Decrypt and Forward can place into 
a Processor’s XML that are sourced either from the Terminal’s encrypted output, or from the POS 
Application’s input directly: 

• Required explicit data – These are the required input fields for an operation. For instance, 
ProcessEMVSRED requires “Amount” from the POS Application, which maps to the field 
replacement variable {Amount}. Names map directly from the input field to the field 
replacement variable. 

• Optional explicit data – This is any data provided through “TransactionInputDetails” structure 
as shown in the input description for the operations. For example, the Processor may require 
the POS Application to submit a Transaction ID for an EMV SALE at transaction time. This 
could be done by the POS Application sending the following input to the ProcessEMVSRED 
operation: 

"TransactionInputDetails":[{"key": "{TransactionID}","value": “123456789”}] 
MagneFlex will then search the DECRYPTANDFORWARD_TEMPLATE_EMV_SALE  template for 
the field replacement variable {TransactionID} and replace it with the value “123456789”. 

• Magnetic Stripe implicit data - Variables common to magnetic stripe card-based transaction 
processing that must be parsed from the Terminal’s output after being decrypted. An 
example is the card number, whose field replacement variable is {CCNum}. See Appendix B 
for a list of variables available on the Decrypt and Forward API. 

• EMV implicit data - EMV tags parsed from the Terminal’s output after being decrypted. Values 
are mapped to field replacement variables with the same tag value. For instance, EMV tag 
9F01 maps to {9F01}. 

  



D998200099-30.docx - MagneFlex  

19 
 

6.2 Decrypt and Forward Output Keys 
XML data returned from the Processor through Decrypt and Forward is parsed by MagneFlex at 
nodes defined by key/value pairs in the Configuration File. The key names take on the following 
convention:  
 
DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_<variable>_<operation>_<transactiontype>. The 
naming structure acts as a tree that MagneFlex traverses looking for a value to assign to the 
variable. The components “operation” and “transactiontype” can be omitted, which will cause the 
variable to be assigned the value regardless of operation and transactiontype used. The value itself 
is the node in the Processor’s output XML where the needed data can be found. There are three 
types of variables: 

• Defined output: These are the named variables in the operation output. An example is 
“AuthCode”, which is represented by the key 
“DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_AUTHCODE” in the Configuration File. If 
the value of this key were “/PurplePayResponse/Approval”, MagneFlex would find the 
AuthCode at that node in the Processor’s (PurplePay, in this example) XML output. Some 
defined output is for POS Application use. Some output is required by MagneFlex to complete 
an EMV transaction with the Terminal. 

• Additional variables: These are output variables presented through the 
“TransactionOutputDetails” structure. For instance, if the following were desired in the 
output, 

"TransactionOutputDetails":[{"key": "MyLuckyNumber","value": “987654321”}] 
a key of the value  “DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_MYLUCKYNUMBER” 
would need to be in the Configuration File with a value that contained the node in the 
Processor’s response where “MyLuckyNumber” could be found. 

• MagneFlex Configuration – These are items, discussed further in the document, that are 
required for general operation of MagneFlex. 

DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_PAYLOAD_<operation>_<transactiontype>: Some 
processors include nested Payloads in CDATA in their XML response. In order for MagneFlex to 
properly parse these nested Payloads, you must define the XML path to the nested Payload in this 
key. Sample value: "//Response//TransactionResponse//Payload" 
  



D998200099-30.docx - MagneFlex  

20 
 

7 Configuration File 
MagneFlex requires a set of static configurations to be loaded into a file on the Terminal Host. The 
file contains key/value pairs used by MagneFlex for several purposes.  

7.1 MagneFlex Configuration 
These keys control the behavior of MagneFlex. 

• PROTOCOL: The protocol used by the POS Application to call MagneFlex. Available values are 
“HTTP” and “HTTPS”. See Appendix C for more information regarding using MagneFlex with 
HTTPS. 

• ActivePaymentService: This key indicates the Operating Mode of MagneFlex: 
“DecryptAndForward” or “MPPG”. 

• BASEADDRESS: The host and port where MagneFlex listens for commands. 
• DECRYPTANDFORWARD_PROCESSOR_DEMOMODE: If “true”, places MagneFlex in demo 

mode. Demo fields and templates are included in the distribution. 
• PERFORM_REJECT_TRANSACTION: If “true”, automatically process a REJECT transaction if 

the Terminal or card declines an EMV transaction any time after the First Card Action 
Analysis is completed. 

7.2 Terminal Management 
These keys provide parameters MagneFlex sends to the Terminal to control its behavior. These keys 
are common to the DynaPro family of readers. For a detailed explanation of their use, please refer to 
the DynaPro SDK Reference. 

• ProcessCardSwipe_DisplayMessage 
• ProcessCardSwipe_Waitime 
• ProcessCardSwipe_Tones 
• ProcessEMVSRED_PINEntryWaitTime 
• ProcessEMVSRED_ConfirmationWaitTime 
• ProcessEMVSRED_Tones 
• ProcessEMVSRED_CardType 
• ProcessEMVSRED_ARPCTimeout 
• ProcessTransaction_PINEntryWaitTime 
• ProcessTransaction_ConfirmationWaitTime 
• ProcessTransaction_Tones 
• ProcessTransaction_CardType 
• ProcessTransaction_ARPCTimeout 

  



D998200099-30.docx - MagneFlex  

21 
 

 

7.3 MPPG Mode Configuration 

7.3.1 Credentials 
These are the credentials of the merchant on MPPG: 

• MPPG_UserName 
• MPPG_Password 
• MPPG_CustomerCode 

7.4 Decrypt and Forward Mode Configuration 

7.4.1 General Configuration Data 
• DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTION_STATUS_SUCCESS: The 

explicit string value returned by the Processor if the transaction was successful.  
• DECRYPTANDFORWARD_PROCESSOR_API: Processor web service message format type. 

Available value: “XML” 
• DECRYPTANDFORWARD_URL_<operation>_<transactiontype>:  The URL6 to be called at the 

Processor for every combination of operation and transaction type7. Valid values of operation 
type are CARDSWIPE, EMV, EMV_FALLBACK, REFERENCEID. Valid transaction types include 
SALE, AUTHORIZE, CAPTURE, VOID, REFUND, FORCE. The <operation> and <transactiontype> 
can be omitted if the same URL is to be used by all. 

• DECRYPTANDFORWARD_CUSTOM_HEADERS_<operation>_<transactiontype>: A text file(s) 
that contains any SOAP headers required by the Processors API for the operation and 
transaction type noted. If the headers are the same for all, <operation> and 
<transactiontype> can be omitted and a single file can be used. MagneFlex will treat it as the 
default. If the Processor accepts raw XML, this key can be ignored. 

• EMV_TAG_ISSUER_AUTH_DATA: An optional element that specifies a specific EMV tag to 
send to the ICC.  

• EMV_TAG_ISSUER_SCRIPT1_DATA: An optional element that specifies a specific EMV tag to 
send to the ICC. 

• EMV_TAG_ISSUER_SCRIPT2_DATA: An optional element that specifies a specific EMV tag to 
send to the ICC. 

• DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_FIXED_ISSUERAUTHENTICATIONDATA: An 
optional element to hard-code the ARPC to be sent back to the card. 

  

                                                      
 
 
 
6 All URLs must be whitelisted on the Decrypt and Forward service at boarding. Please contact Magensa support for 
further details. 
7 Though, as noted earlier, not all combinations are valid. 



D998200099-30.docx - MagneFlex  

22 
 

7.4.2 Credentials 
These are the credentials of the integrator on Decrypt and Forward. 

• DECRYPTANDFORWARD_UserName 
• DECRYPTANDFORWARD _Password 
• DECRYPTANDFORWARD _CustomerCode 

These fields can be overridden by using the AdditionalRequestData field as follows: 
"AdditionalRequestData": [{ 

“key”: “Authentication”, 
“value”: 
"<Authentication><CustomerCode>CustomerCode</CustomerCode><UserName>Us
ername</UserName><Password>Password</Password></Authentication>" 
}] 

 

7.4.3 Plug Data 
This data is required for Decrypt and Forward when used with Operation ProcessReferenceID. Place 
it in the configuration file with values as shown.  
 

• DECRYPTANDFORWARD_FIXED_TRACK1: 
value="65CCFABF7CA0BD0B9838068AC8D79CB79C056D20F5BCDFC13FFE07232ED153
9E01BDFA299386090608ACB939231DACFA6E88D7AE77D9F4040DA0E360BA797834B
5D80018E7ACC84D" 

• DECRYPTANDFORWARD_FIXED_TRACK2: 
value="0B5F549A86201CD1CA33FF253C2F818A01CF54D1D2951170F55008C0F69156
B2F8F33455D9287C29" 

• DECRYPTANDFORWARD_FIXED_DEVICESERIAL: value="98EB0C8615101A0E" 
• DECRYPTANDFORWARD_FIXED_KSN: value="950002000110AA20004D" 
• DECRYPTANDFORWARD_FIXED_MAGNEPRINT: 

value="3818239FA4BFB7610B568826C44CFDBCFD40460B037AED3598FF3974AD9B6C
7A46F4C059A17C3E9F2AD06D8B93C5A4DEA0D71C36A79F3E99" 

• DECRYPTANDFORWARD_FIXED_MAGNEPRINTSTATUS: value="00000200" 

  



D998200099-30.docx - MagneFlex  

23 
 

 

8 Example Transactions 
The following examples are provided to improve clarity into MagneFlex operation. The steps may not 
correspond to processing operations in the same order as presented here, though the effect is the 
same. 

8.1 MPPG Mode 

8.1.1 Step 1: POS Application calls MagneFlex 
The POS Application requests an EMV Sale transaction be performed with the DynaPro. The 
operation to use for this transaction is ProcessEMVSRED. In this example, we assume the Processor 
requires a user-generated “TransactionID”. Therefore the TransactionInputDetails key/value array 
must be used. The key may be any string the integrator desires, as long as a corresponding field 
replacement variable is present in the XML Template for this operation for this Processor: 
{ 

"AdditionalRequestData": null, 
"DeviceID": null, 
"Options": 0, 
"TransactionInput": 
{ 

"TransactionType": 1, 
"Amount": 1.00, 
"TransactionInputDetails": 
[ 

{ 
"key": "{TransactionID}", 
"value": “123456789” 

} 
], 
"CashBack": 0.00 

} 
} 

8.1.2 Step 2: MagneFlex interacts with the Configuration File 
MagneFlex first reads the following data from the Configuration File: 
    <add key="ActivePaymentService" value="MPPG" /> 
 
This indicates MPPG mode. Then MagneFlex reads the Terminal Management data corresponding to 
the EMV operation, ProcessEMVSRED: 
 
    <add key="ProcessEMVSRED_PINEntryWaitTime" value="20" /> 
    <add key="ProcessEMVSRED_ConfirmationWaitTime" value="20" /> 
    <add key="ProcessEMVSRED_Tones" value="1" /> 
    <add key="ProcessEMVSRED_CardType" value="2" /> 
    <add key="ProcessEMVSRED_ARPCTimeout" value="20" /> 
 
Finally, MagneFlex reads the MPPG credentials for this merchant: 
 
    <add key="MPPG_UserName" value="MPPGWSTestUser" /> 
    <add key="MPPG_Password" value="password" /> 



D998200099-30.docx - MagneFlex  

24 
 

    <add key="MPPG_CustomerCode" value="9900000000000002" /> 

8.1.3 Step 3: MagneFlex interacts with DynaPro 
MagneFlex calls the DynaPro and effects an EMV transaction. The DynaPro outputs encrypted and 
unencrypted data to MagneFlex 

8.1.4 Step 4: MagneFlex calls Magensa’s MPPG service 
Magensa processes the transaction per the merchant’s profile stored at Magensa. The response 
from the Processor is returned to MagneFlex 

8.1.5 Step 5: MagneFlex completes the EMV transaction with the Terminal 
As required by EMV specifications, certain data from the Processor must be sent to the Terminal for 
completion of EMV processing. 

8.1.6 Step 6: MagneFlex returns response data to the POS Application 
The output will be structured as follows: 
{ 

"MagTranID": "adbac28a-837c-4650-b3af-6e8a2b5f1fd4", 
"TransactionUTCTimestamp": "11/18/2015 1:14:49 AM", 
"CustomerTransactionID": "adbac28a-837c-4650-b3af-6e8a2b5f1fd4", 
"TransactionOutput": 
{ 

"TransactionID": "000000000000000332", 
"TransactionStatus": "000", 
"TransactionMessage": "APPROVED", 
"AuthCode": "TEST57", 
"AVSResult": null, 
"IssuerAuthenticationData": null, 
"IssuerScriptTemplate1": null, 
"IssuerScriptTemplate2": null, 
"IsTransactionApproved": true, 
"CVVResult": null, 
"AuthorizedAmount": null, 
"TransactionOutputDetails": null 

} 
"EMVSREDOutput": 
{ 

"AdditionalOutputData": null, 
"CardID": null, 
"IsReplay": false 

} 
} 
  



D998200099-30.docx - MagneFlex  

25 
 

 

8.2 Decrypt and Forward Mode 

8.2.1 Step 0: Configure Decrypt and Forward Templates 
Before MagneFlex can be used in this mode with a particular Processor, templates must be created 
for each of the operation/transaction type combinations desired. The general steps are shown here. 
Contact Magensa support for further assistance. 

1. Obtain the Processor’s web service API. 
2. Match the Processor’s operations and transaction types to be used to corresponding 

operations and transaction types in MagneFlex. 
3. Create the needed templates by replicating the desired Processor XML input for each 

operation/transaction type into the body of the template. Be sure to include any needed 
header information in the file denoted by DECRYPTANDFORWARD_CUSTOM_HEADERS. 

4. Insert field replacement variables into the template for desired Terminal data (general and 
EMV) as well as POS Application data. 

5. Enter key/value pairs into the Configuration File indicating the path to each template. 
6. Examine the Processor’s output schema to determine the location of needed return data. 

Enter key/value pairs into the Configuration File that indicate the name of the desired 
variable and the XML node in the Processor output where the variable may be found. The 
located data will be returned in the MagneFlex output. Three variables are available to be 
returned directly to the Terminal in EMV transactions: 

a. ISSUERAUTHENTICATIONDATA – Contains the ARPC or other data required by the 
card brand to be returned to the ICC 

b. ISSUERSCRIPTTEMPLATE1 – A string field to return an EMV issuer script to the ICC. 
c. ISSUER_SCRIPTTEMPLATE2 – A string field to return an EMV issuer script to the ICC. 

8.2.2 Step 1: POS Application calls MagneFlex 
The POS Application requests an EMV Sale transaction be performed with the DynaPro. The 
operation to use for this transaction is ProcessEMVSRED. In this instance, however, let us assume 
the Processor requires a cardholder address and a merchant password for every transaction8: 
{ 

"AdditionalRequestData": null, 
"DeviceID": null, 
"Options": 0, 
"TransactionInput": 
{ 

"TransactionType": 1, 
"Amount": 1.00, 
"TransactionInputDetails": 
[ 

{ 
"key":"{MerchantPassword}", 

                                                      
 
 
 
8 In step 0, it is assumed that the field replacement variables {MerchantPassword} and {Address} were placed in the 
Processor’s XML in the template for EMV_SALE. 



D998200099-30.docx - MagneFlex  

26 
 

"value":"56^$3@3T" 
}, 
{ 

"key":"{Address}", 
"value":"123 4th Street" 

} 
], 
"CashBack": 0.00 

} 
} 

8.2.3 Step 2: MagneFlex interacts with the Configuration File 
MagneFlex first reads the following data from the Configuration File: 
    <add key="ActivePaymentService" value="DecryptAndForward" /> 
 
This indicates Decrypt and Forward mode. Then MagneFlex reads the Terminal Management data 
corresponding to the EMV operation, ProcessEMVSRED: 
 
    <add key="ProcessEMVSRED_PINEntryWaitTime" value="20" /> 
    <add key="ProcessEMVSRED_ConfirmationWaitTime" value="20" /> 
    <add key="ProcessEMVSRED_Tones" value="1" /> 
    <add key="ProcessEMVSRED_CardType" value="2" /> 
    <add key="ProcessEMVSRED_ARPCTimeout" value="20" /> 
 
Next, MagneFlex reads additional configuration data for Decrypt and Forward: 
 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTION_STATUS_SUCCESS" 
value="000" /> 
<add key="DECRYPTANDFORWARD_PROCESSOR_API" value="XML" /> 
<add key="DECRYPTANDFORWARD_URL_EMV_SALE" 
value="https://test1.purplepay.com/purplepay" /> 
<add key="DECRYPTANDFORWARD_CUSTOM_HEADERS" value="CustomHeaders.txt" /> 
 
Next, MagneFlex reads the credentials for this integrator of Decrypt and Forward at Magensa: 
 
    <add key="DECRYPTANDFORWARD_CustomerCode" value="9900000000000002" /> 
    <add key="DECRYPTANDFORWARD_UserName" value="DAFWSTestUser" /> 
    <add key="DECRYPTANDFORWARD_Password" value="Password" /> 
 
Next, MagneFlex reads the plug data: 
 
    <add key="DECRYPTANDFORWARD_FIXED_TRACK1" 

value="65CCFABF7CA0BD0B9838068AC8D79CB79C056D20F5BCDFC13FFE07232ED1539E01BDFA29938

6090608ACB939231DACFA6E88D7AE77D9F4040DA0E360BA797834B5D80018E7ACC84D" /> 

    <add key="DECRYPTANDFORWARD_FIXED_TRACK2" 

value="0B5F549A86201CD1CA33FF253C2F818A01CF54D1D2951170F55008C0F69156B2F8F33455D92

87C29" /> 

    <add key="DECRYPTANDFORWARD_FIXED_DEVICESERIAL" value="98EB0C8615101A0E" /> 

    <add key="DECRYPTANDFORWARD_FIXED_KSN" value="950002000110AA20004D" /> 



D998200099-30.docx - MagneFlex  

27 
 

    <add key="DECRYPTANDFORWARD_FIXED_MAGNEPRINT" 

value="3818239FA4BFB7610B568826C44CFDBCFD40460B037AED3598FF3974AD9B6C7A46F4C059A17

C3E9F2AD06D8B93C5A4DEA0D71C36A79F3E99" /> 

    <add key="DECRYPTANDFORWARD_FIXED_MAGNEPRINTSTATUS" value="00000200" /> 

 
Finally, MagneFlex reads the template configuration data for an EMV_SALE: 

8.2.3.1 Input 
    <add key="DECRYPTANDFORWARD_TEMPLATE_EMV_SALE" 
value="DecryptAndForwardTemplates\Purplepay-EMV-SALE.xml" /> 

8.2.3.2 Output 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTIONID" 
value="/PurplePayResponse/TransactionID" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTIONMSG1" 
value="/PurplePayResponse/ResponseText" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTIONMSG2" 
value="/PurplePayResponse/ErrMsg" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTIONSTATUS" 
value="/PurplePayResponse/ActionCode" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_ISSUERAUTHENTICATIONDATA" 
value="/PurplePayResponse/ICC/IssuerAuthData" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_ISSUERSCRIPTTEMPLATE1" 
value="/PurplePayResponse/ICC/IssuerScript1" /> 
    <add key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_ISSUERSCRIPTTEMPLATE2" 
value="/PurplePayResponse/ICC/IssuerScript2" /> 

8.2.4 Step 3: MagneFlex interacts with DynaPro 
MagneFlex calls the DynaPro and effects an EMV transaction. The DynaPro outputs encrypted and 
unencrypted data to MagneFlex 

8.2.5 Step 4: MagneFlex builds the XML payload for the Decrypt and Forward service 
First, MagneFlex determines which XML Templates are needed for this operation. As the 
ProcessEMVSRED operation was selected by the POS Application, and the TransactionType “SALE” 
was submitted, MagneFlex opens the XML Template file indicated by the key 
“DECRYPTANDFORWARD_TEMPLATE_EMV_SALE” which is 
“DecryptAndForwardTemplates\Purplepay-EMV-SALE.xml”. 
MagneFlex then opens the template file and interrogates it. The following is an example of such a file 
for a fictitious Processor called “Purplepay”. Please note the added comments shown in green: 
 
<?xml version="1.0"?>Tag definitions and structure are defined by the Processor, in this case the 
Processor “Purplepay”. These can generally be found in the API published by the entity. Required 
tags are placed in the XML Template verbatim. 
<Purplepay Version="2.0"> 

<Application Version="2.0.0">MAGNEFLEX</Application>Many of the field values, such as 
“MAGNEFLEX” in this case, are defined or assigned by the Processor. 

 <Gateway>Purplepay</Gateway> 
<IndustryInfo Type="RETAIL"> 
<Password>{MerchantPassword}</Password> This indicates to MagneFlex to search for this 
field name in the input XML provided by the POS Application. As this is optional explicit 
data, MagneFlex will find the field at the node “TransactionInputDetails”. When it has done 



D998200099-30.docx - MagneFlex  

28 
 

so, it replaces the variable here with the literal value of the field it finds in the input, which 
is “56^$3@3T” in this case. If MagneFlex could not find this variable in the input, it would 
assume the variable was implicit and pass this line of XML as shown verbatim to the 
Decrypt and Forward service. If the variable is defined there, it would be replaced using 
data obtained from the decrypted Terminal payload. If not, this tag would be completely 
removed before the final XML message is sent to the Processor. 
<Address>{Address}</Address> 
<TotalAmount>{Amount}</TotalAmount>This field replacement variable must be present in 
the XML Template as it maps to a required MagneFlex input. 
<TransactionID>{TransactionID}</TransactionID> 
<TransactionType>SALE</TransactionType> 
<ICC>These are example of field replacement variables that are related to EMV that will be 
replaced by Decrypt and Forward from the Terminal payload. 

<AID>{9F06}</AID> 
<ARQC>{9F26}</ARQC> 
<ATC>{9F36}</ATC> 
<AuthorizedAmount>{9F02}</AuthorizedAmount> 
<CVMResult>{9F34}</CVMResult> 
<CardSeqNum>{5F34}</CardSeqNum> 
<CryptInfoData>{9F27}</CryptInfoData> 
<CurrencyCode>{5F2A}</CurrencyCode> 
<TVR>{95}</TVR> 
<TermAppVer>{9F09}</TermAppVer> 
<TermCountryCode>{9F1A}</TermCountryCode> 
<TermType>{9F35}</TermType> 
<TransSeqNum>{9F41}</TransSeqNum> 
<TransType>{9C}</TransType> 
<UnpredictableNumber>{9F37}</UnpredictableNumber> 

</ICC> 
</Purplepay> 
 

8.2.6 Step 5: MagneFlex sends the constructed XML message to the Decrypt and Forward 
service 
Once the replacements are complete, MagneFlex will send the completed XML message to Decrypt 
and Forward along with the Terminal payload and some of the configuration data. Decrypt and 
Forward will perform further field replacement work, and then send the final message to the 
Processor at the URL specified in the Configuration File. 

8.2.7 Step 6: MagneFlex receives the response from Decrypt and Forward and parses key 
data 
The response from the Processor, which the Decrypt and Forward service returns verbatim to 
MagneFlex, must be parsed for data the Terminal requires to complete the transaction. The following 
is an example of the response to the call made above in step 4. See inline comments in Green: 
<PurplepayResponse Version="2.0"> 

<TransactionID>000000000000000134</TransactionID>When parsing the return data, 
MagneFlex looks for tags defined in the configuration file that might match the output. In 
this case, we see that it matches “<add 
key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_TRANSACTIONID" 
value="/PurplepayResponse/TransactionID" />”. This tells MagneFlex that the tag 
“TransactionID” that it found in the “PurplepayResponse” maps to the MagneFlex output 



D998200099-30.docx - MagneFlex  

29 
 

field “TransactionID”. If the tag is defined in the configuration file, but not present in the 
output, MagneFlex will throw an error. However, some fields defined in the configuration file 
are used internally by MagneFlex and not returned in the output. 
<ActionCode>000</ActionCode> 
<Approval>TEST26</Approval> 
<ResponseText>APPROVED</ResponseText> 
<UniqueID>QkVhViRcQnPbQlQcRcSiPmUb</UniqueID> 
<RRN>526018426541</RRN> 
<RawResponseCode>00</RawResponseCode> 
<ICC>  

<IssuerAuthData>472AD94F9FECD47D3030</IssuerAuthData> The location of this 
data was defined in the Configuration File as “    <add 
key="DECRYPTANDFORWARD_PROCESSOR_FIELDMAP_ISSUERAUTHENTICATIOND
ATA" value="/PurplepayResponse/ICC/IssuerAuthData" />”. 
<IssuerScript1></IssuerScript1> 
<IssuerScript2>9F180430303031860E04DA9F580903C0DC6EF04E9C8A09860E
04DA9F590908460C835744CE4E5C</IssuerScript2> 

</ICC> 
</PurplepayResponse> 
 

8.2.8 Step7: MagneFlex completes the transaction with the terminal (EMV only) and 
responds back to the POS Application 
Since the transaction is EMV, the data is sent back to the Terminal and it completes the transaction 
with the card. Then the Terminal responds with a final message to MagneFlex, and MagneFlex forms 
the final output for the POS Application and sends it: 
{ 

"MagTranID": "ad3ed21a-59d8-4359-83b5-c42ccc953b05", 
"TransactionUTCTimestamp": "11/18/2015 9:29:00 PM", 
"CustomerTransactionID": "ad3ed21a-59d8-4359-83b5-c42ccc953b05", 
"TransactionOutput": 
{ 

"TransactionID": "000000000000000332", 
"TransactionStatus": "000", 
"TransactionMessage": "APPROVED", 
"AuthCode": "TEST57", 
"AVSResult": null, 
"IssuerAuthenticationData": null, 
"IssuerScriptTemplate1": null, 
"IssuerScriptTemplate2": null, 
"IsTransactionApproved": true, 
"CVVResult": null, 
"AuthorizedAmount": null, 
"TransactionOutputDetails": 
[ 

{ 
"Key": "ProcessorResponse", 
"Value": "<PurplePayResponse 
Version=\"2.0\"><TransactionID>000000000000000332<\/Transa
ctionID><ActionCode>000<\/ActionCode><Approval>TEST57<\/App



D998200099-30.docx - MagneFlex  

30 
 

roval><ResponseText>APPROVED<\/ResponseText><UniqueID><\/
UniqueID><\/PurplePayResponse>" 

} 
] 

}, 
"EMVSREDOutput": 
{ 

"AdditionalOutputData": null, 
"CardID": null, 
"IsReplay": false 

} 
} 
  



D998200099-30.docx - MagneFlex  

31 
 

9 Appendix A – EMV Terminal Configuration 
 
Terminals to be used with MagneFlex must be EMV configured and certified to the Processor in 
online-only mode. MagneFlex does not support offline EMV card processing. Please see the required 
EMV configuration published by the certifying Processor, however, for use by MagneFlex, at a 
minimum the Terminal must be configured as follows9: 
 

Tag Tag Type Value Description 

9F1B Application 00 00 00 00 Floor limit 

DFDF71 Application 00 xx 00 00 00 Terminal Action Code - Denial 

DFDF72 Application bit 8, byte 4 must be ‘1’ Terminal Action Code - Online 

DFDF02 Reader Must at least contain 
‘57’ 

Authorization Request Tags 

DFDF17 Reader Cannot contain ‘57’ or 
‘99’ 

Batch Data Tags 

 
  

                                                      
 
 
 
9 DynaPros ordered from MagTek with default tags will meet these requirements. 



D998200099-30.docx - MagneFlex  

32 
 

10 Appendix B – Decrypt and Forward Magstripe Field 
Replacement Variables 
Variables 
1. {DecryptedData}  

2. {CCName}  

3. {CCNum}  

4. {CCTrack1}  

5. {CCTrack1Length}  

6. {CCTrack2}  

7. {CCTrack2Length}  

8. {CCardType}  

9. {KSN}  

10. {MMYYCCExpdt}  

11. {MM_YYCCExpdt}  

12. {DD}  

13. {MM}  

14. {YY}  

15. {YYYY}  
 
Functions 
1. $Add(Oprand1_Numeric,Operand2_Numeric,ToStringFormat_Optional) 
2. $DateTimeNow(Optional_format,Optional_0_Local_Or_1_Universal) 
3. $DecimalToString (Oprand1_Numeric,ToStringFormat_Optional) 
4. $IndexOf(string,searchString,startPosition,numberOfCharacterPosition) 
5. $IndexIgnoreCaseOf(string,searchString,startPosition,numberOfCharacterPosition) 
6. $Length(string) 
7. $Multiply(Oprand1_Numeric,Operand2_Numeric,ToStringFormat_Optional) 
8. $Replace (string,oldValue,newValue) 
9. $Substring(string,startindex,length) 
10. $Substring(string,startindex,length) 
11. $TLVLength(string) 
12. $Trim(string)  



D998200099-30.docx - MagneFlex  

33 
 

11 Appendix C – Use of MagneFlex with Browsers and Mixed 
Content 
MagneFlex will accept an HTTP call from any source including browsers. However, many browsers 
have restrictions on the use of mixed HTTP/HTTPS content. If the POS Application is served from an 
HTTPS source, the browser may not allow it to call MagneFlex with HTTP. There are two options for 
resolving this issue: 

1. If available, configure the browser to accept mixed mode content, and then call MagneFlex 
with HTTP as usual. However, even when so configured, the browser may still warn regarding 
the presence of mixed mode content. 

2. Install a valid TLS certificate on the Terminal Host10: 
a. Associate an Internet domain to the Terminal Host. 
b. Change the BASEADDRESS key in the Configuration File to a URL with this domain. 
c. Generate a TLS server certificate for the Terminal Host that contains the domain. 
d. Import this certificate into the Personal Store under Local Computer. 
e. Run the command below at the command console as Administrator:  

i. netsh http add sslcert ipport=0.0.0.0:9000 
certhash=650db634b84af07bf5bfee7d247270b34d776383 
appid={00112233-4455-6677-8899-AABBCCDDEEFF}11 

f. Change the PROTOCOL key in the Configuration File to “HTTPS”. 

                                                      
 
 
 
10 These instructions are for reference only. You may need to make adjustments for your environment. 
11 The fields shown need to be adjusted for your certificate where Certhash is the thumbprint of certificate. 



D998200099-30.docx - MagneFlex  

12 Appendix D – MagneFlex Error Messages 
If MagneFlex detects an error, it will return two key value pairs: faultcode and faultstring. The fault 
string provides additional information regarding the error. The faultcode values are as follows: 

• 100: SUCCESS (no error detected, successful operation12) 
• 101: GENERIC (error) 
• 102: DEVICE_OPERATION_FAILED 
• 103: DEVICE_OPERATION_TIMEOUT 
• 104: DEVICE_OPEN_FAILED 
• 105: INVALID_AMOUNT 
• 106: INVALID_CASHBACK 
• 107: PROCESSOR_CALL_FAILED (Processor unreachable or returns unprocessable data) 

  

                                                      
 
 
 
12 MagneFlex only detects processing level errors in itself and Magensa. A transaction fault at the Processor may 
still be deemed by MagneFlex to be a “SUCCESS”, if the Processor was able to return data to Magensa. 



D998200099-30.docx - MagneFlex  

35 
 

13 Appendix E – First Data EMV Receipt Requirements 
• Transaction Type (Purchase) 
• Application Preferred Name (Tag 9F12) is present on card in a supported characters set so it must be 

printed (VISA CREDIT or DEBIT) 
• Card Entry Method indicates that card information was obtained from a contactless tap (Contactless) 
• Currency indicator USD$ must be printed on the total line 
• Transaction Amount (Tag 9F02) must be printed (75.01) 
• Application PAN (Tag 5A) must be truncated and masked (************8106) 
• Authorization Mode identifies that the transaction was sent online to the issuer (Issuer) 
• EMV AID must be printed on receipt and identified by the tag name: 
• AID (A0000000031010)  
• EMV Information should be printed in the order shown and identified by the tag names: 
• TVR (0000008000) 
• IAD (06010A03A40002) 
• TSI (E800) 
• ARC (00) 
• Cardholder Verification Method was “Signature” so a Signature Line must be printed 


	0. Table 0.1 - Revisions
	Table of Contents
	1  Introduction
	2 System Architecture
	3 Operating Modes
	3.1 MPPG
	3.2 Decrypt and Forward
	3.3 Demo

	4 Transaction Types
	5 Operations
	5.1 Description
	5.1.1 ProcessCardSwipe
	5.1.2 ProcessEMVSRED
	5.1.3 ProcessReferenceID

	5.2 Input Fields
	5.3 Output Fields
	5.4 Exception

	6 Translation Scheme
	6.1 Decrypt and Forward XML Input Templates
	6.2 Decrypt and Forward Output Keys

	7 Configuration File
	7.1 MagneFlex Configuration
	7.2 Terminal Management
	7.3 MPPG Mode Configuration
	7.3.1 Credentials

	7.4 Decrypt and Forward Mode Configuration
	7.4.1 General Configuration Data
	7.4.2 Credentials
	7.4.3 Plug Data


	8 Example Transactions
	8.1 MPPG Mode
	8.1.1 Step 1: POS Application calls MagneFlex
	8.1.2 Step 2: MagneFlex interacts with the Configuration File
	8.1.3 Step 3: MagneFlex interacts with DynaPro
	8.1.4 Step 4: MagneFlex calls Magensa’s MPPG service
	8.1.5 Step 5: MagneFlex completes the EMV transaction with the Terminal
	8.1.6 Step 6: MagneFlex returns response data to the POS Application

	8.2 Decrypt and Forward Mode
	8.2.1 Step 0: Configure Decrypt and Forward Templates
	8.2.2 Step 1: POS Application calls MagneFlex
	8.2.3 Step 2: MagneFlex interacts with the Configuration File
	8.2.3.1 Input
	8.2.3.2 Output

	8.2.4 Step 3: MagneFlex interacts with DynaPro
	8.2.5 Step 4: MagneFlex builds the XML payload for the Decrypt and Forward service
	8.2.6 Step 5: MagneFlex sends the constructed XML message to the Decrypt and Forward service
	8.2.7 Step 6: MagneFlex receives the response from Decrypt and Forward and parses key data
	8.2.8 Step7: MagneFlex completes the transaction with the terminal (EMV only) and responds back to the POS Application


	9 Appendix A – EMV Terminal Configuration
	10 Appendix B – Decrypt and Forward Magstripe Field Replacement Variables
	11 Appendix C – Use of MagneFlex with Browsers and Mixed Content
	12 Appendix D – MagneFlex Error Messages
	13 Appendix E – First Data EMV Receipt Requirements

